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m
Abstract ‘

The phase-lock phenomenon of a mass sled sliding along in a circular
slingatron is studied both numerically and analytically. Parameters that describe
a slingatron, in which the phase angle of the swing arms increases quadratically
in time, are found to be simply related to the sled’s speed during phase lock. The
time required for phase lock to occur is related to a simple exponential function
of the gyration speed and the coefficient of friction between the sled and track.
Accurate time histories describing the motion of the accelerating sled are
expressed in terms of confluent hypergeometric functions ,F,. These results are
then used to obtain physical insight into why the phase-lock phenomenon takes
place and to describe the important role that friction plays by damping the
oscillatory motion of the sled.
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1. Introduction

A concept called the slingatron, used to accelerate a mass (sled) to high velocity,
has been proposed and studied by Tidman [1]. This accelerator can propel either
a constant mass or an ablating mass sled along a guide tube forming the
slingatron track [2]; several slingatron configurations have been examined
[1,2]. A simple friction model is also used in which the friction force is assumed
to be proportional to the normal force exerted by the track [2] on the moving sled.

Previous work has shown that the relative phase angle (between the sleds”
velocity vector and the gyration velocity vector of the guide tube) locks into an
approximate constant value. This report presents numerical and analytical
results found from our investigation of this phase-lock phenomenon for a
constant point mass accelerated around a circular track with the friction
coefficient taken to be a constant. Numerical simulations, as well as simple
analytical results, show that the mass can reach very high velocities, provided
that the gyration speed can increase with sufficient acceleration. We will show
that when the gyration phase angle varies quadratically with time, the
phase-lock value plus the time required to obtain this value are simply related to
the gyration acceleration, the coefficient of friction, and the ratio of the two
characteristic lengths that describes the slingatron geometry. These relationships
are used to aid our understanding and to make predictions of the phase-lock
phenomenon.

2. Equations of Motion

Consider the circular slingatron shown in Figure 1, which has radius vector R at
the sled location with its center attached to the gyration arm r positioned at
angle t//(t) with respect to the laboratory frame at time t. The position of the
accelerating point mass is given by R+r, and the corresponding velocity is
therefore V=R +¥F. The force F acting on the mass M can be written as
F=F m+F,n, in which m=nxk and n=-R’/R’ are unit vectors pointing
normal (toward the center of the circle) and anti-parallel to the circular track.
Letting i,j be unit vectors along the laboratory frame’s abscissa and ordinate
gives the time derivative of the momentum equations the following form:

Mx =-F, cosp + F, sinp and My =-F sinp~F, cos¢, §))
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Circular Slingatron Track
Figure 1. Schematic of a circular slingatron.

with Cartesian coordinates (x,y) in the (i, j) laboratory frame constrained so
that

x = Rcos¢ +rcosy and y =Rsing +rsiny . @
The parallel the force, F,, attributed to friction is represented as
Fy=pF, . G

Equations (1-3) will determine the angle ¢ in terms of the g1ven angle y(t)
resulting from the following differential equation




~§=pd +aly+uy?)cos(y-¢)+a(uy-y? )sn (y-¢) @
for which the length ratio is defined as a =1/R..

Generally, the solution to equation (4) is obtained from numerical integration for
any choice of the time-dependent gyration angle y(t). The mass velocity
V? =%? + ¥ relative to the laboratory reference frame is easily calculated using

V? = ':Za cos(y — (I))i +a’ + (i] }\j}z R*. )
v 4

3. Phase Lock In

Tidman [1] has presented a complete analysis of cases where phase lock in occurs
for all times, ¢, when the angle 6 =y — ¢ is constant, so that ¢ =\ and ¢ =V .
These conditions transform equation (4) to

a(sinG—ycosé?)—,u

S bt b= ,
$=5¢ a(psind +cosf )+1

(6)

and this is easily integrated so that equation (5) becomes
Vi ((bo R)z(Zoccos9+oc2 +1)

(b, z—1) %
with ¢, = ¢(0) and , = $(0).

Examining the factor b, defined in the second equation of equations (6), shows
that the velocity is time independent when b = 0 so the parameters are related as

G=i‘2tan—1|:\/(a2 _1)“2 o ia}inn, n=0,f,2---,

(o~ 1)p
so that 8)
Vi o (Ii\/(az — 1)y’ +a’ )2 (4,R)?
pl+1 '

A short amount of algebra reveals that equation (8) is satisfied whenever the
force caused by friction, pF|, is large enough to prevent the point mass from
accelerating in a direction tangent to the circular track. Furthermore, the velocity
given by equation (7) was shown by Tidman [1] to diverge (to a nonrelativistic
limit) at the time t_ =\¢,b) . In practice, for this to occur, one must have
t, 20, which means that a divergent velocity V will occur under the




assumption a4/1+ u* <1, whenever the parameters also satisfy the relation

sin(e ~tan™ u) >— B ©)

ayp’ +1

An example typical of this behavior is shown in Figure 2.

R = 5m¢(0)=n a=0.20,u=0.005 0=n/4
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Figure 2. Divergent velocity for R=5m, t, =268 s.

4. Driven Circular Slingatron

We next consider a class of slingatrons so that the gyration of the circular track is
prescribed by the angular displacement \p(t) =y, +2nft+nft? for constants f
and f. Typical numerical solutions to equation (4) and equation (5) are given in
Figure 3 with initial conditions ¢, =0 and ¢, =2nf. Two corresponding
calculations of the angle 6=y —¢ as functions of time are shown in Figure 4.
The last two plots show that the slingatron will eventually achieve phase lock in,
ie. #=0and =0, when the gyration angle is quadratic in time, ie.
w(t)=y,+27ft+nfs

To better understand how the final lock-in angle is related to the given
parameters, we now rewrite equation (4) in terms of # =y —¢ and calling
qg=ft+f weget
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Figure 3. Velocity vs. time P = f/fLa=1/R.
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Figure 4. Angle lock invs. time P = f /2, a=r/R.




f20" -9’ +47rpq6'+21t0c(27tq2 —fp)sinE)—

2noz(21tq2+f)cos9=2n(7rpq2+f)‘ (10)

Focusing our attention on large values of t, consider the following asymptotic

expansion for 0
0 6 6
9=0+/+/+/+~--
0 qZ q4 q6

Substituting this back into equation (10) and keeping only the largest order term
gives us

47 [ersin(8, ) - ap cos (6,) - p]= 0=

limﬂ’-—»tan'1 —aiw/a2+,u2(a2—ﬂ +nm,n=012---
oo ) ,u(az—-l)

However, Tidman [1] has shown that @ values near to 7/2 lead to instabilities,
which tells us that the correct asymptotic must have the following form

—a+\/oc2+p.2(oc2—17}~

1im9—°— - 2nm+ tan’l{

tow

(oc+1) P-(Otz—l)

(11)
EioW)n=01-
The limiting value plotted in Figure 4 corresponds to equation (11) with n=0.

Subtracting this asymptotic value of © so that y —>@+6, transforms
equation (10) (after some algebra) to the following expression:

£2y"—p £2y? +47rpfqy’+21r(21th2 +fp)sin'y+
21:(27tp. q*-f X)cosy=2n(u 7 q’ +f), (12)
7»=\/(a2-—1)p.2 +a’,q=ft+f.

Since 6, ~ u+ p/a is small for realistic values of u and &, we now make the
small angle approximation, y <<1, reducing equation (12) to
f2 }/"+47rf,uqy’+27[(27r/1q2 +fu )}/ =27 (fﬂ,+l)
y(f)=w, -6, and 7(f)=0.
There are many ways to write solutions to equation (13), but we use the

following procedure, which seemed expedient for both numerical and analytic
examinations. First, make the substitutions

(13)



p=2T¢[f
z=yexp((w u+T)g*/T)
into the left-hand side of equation (13), which gives us,

(14)

2 92 2 ) 2
pz"+(~;——p)z’+p(ﬂ 2 +£F2ﬂ ‘u) L z=0.

Next, choose I'=+iz+/ A—p® to force the coefficient of z to be independent
of p so that the left-hand side of equation (13) is now transformed into the

complex plane such that

” 1 ’ _
pz +(5—sz -z/4=0. 1)

The solution to equation (15) is a linear combination of the confluent
hypergeometric function [3], ;F;, so the solution of the left-hand side of
equation (13), vy, is

11 33
VH(P)=[ C1 IFI(Z’E’p‘) + CZ«[;lFl(Z,E:PI!
xexp[(iw/ﬂ,-—‘uz -,u);zqz/f], A—p*>0,

for complex constants C1, C2. Inspecting equation (13) reveals that the complex
conjugate of equations (14) will cause equation (15) to be replaced by its
conjugate. Thus, the conjugate of equation (16) will also produce equally valid
solutions, vy, to equation (13). The required real values of y are now found by
taking linear combinations (average values) of v, and Y-

(16)

These results show that the amplitude of y and therefore 0 decrease as the
factors

{ft1+f}exp(—ﬂp(ft+f)2/f), (17)

provided that the functions | F, for the parameters used here do not diverge.
This is easily shown by the use of the integral representation [3] of | F,,

J7

(F(1/4,1/2, p)=W Ojt‘3/“ef"(1—t)‘3/“dz. (18)

Now taking the absolute value of each side of equation (18) and remembering -
that p is purely imaginary, we find




[ e (1- o) ¥ i
0

|\ F(/4.12.p)| = ’7@7}%@

| r
r(y4y
=1,

ljt‘3/ -1y ar (19)

0

showing that ,F(1/4,1/2,p) is bound; a similar argument shows that
|1F . (1/ 4,3/2, p] is also bound. Thus, the homogeneous solutions, given by
equation (16), decay according to equation (17). Obtaining solutions for the
limiting case, in which £ — 0, is easily preformed directly from the first of
equations (13). For this case, the solution 0 has the form

9=[C1cos(27zf1/a—,uzt)+C2$in(2ﬂf a—,uzt)]exp(-erf,ut), (20)

which shows that the decaying factors of equations (17) are replaced with
exp(-2n f unt).

The nonhomogeneous solution of equation (13) can be shown to asymptotically
approach zero for large t. Therefore, the asymptotic solution found in
equation (11) continues to show 0 — 6, ~ p + p/a for small values of p and .
A sample from Figure 4 that exhibits both the asymptotic and decaying
characteristics of a solution to equation (13) is given in Figure 5. The velocity
corresponding to the asymptotic solution of equation (13) can be obtained from
equation (5) by letting ¢ / ¥ — 1. Thus, one will find

V_)\/(azz/l);ui:az +~1Rlpz(o:+1)(;oe—/12 )RV?, 1)
N

and this shows that velocity is asymptotically proportional to Ry for our choice
of . Choosing f = 0, one will find that the asymptotic solution to equation (10)
will now contain both even and odd powers of t, but the 0-th order term will
still have the solution given by equations (11).

Equation (6) and the long time limit found in equations (11) tell us that b — 0,
which implies ¢, = (b ¢, ) —> . Thus, the sled will continue to gain velocity
for a long period of time whenever the gyration speed varies quadradically with
t. An example of this is given in Figure 6, which shows that both the numerical
and the analytical results are in good agreement, again providing compelling
evidence for the decaying factors given in equation (17) as well as the value as
the final phase-lock angle.

So far, we have assumed that the friction coefficient is very small but finite
O<p<<a<l. Equations (17) and (20) show that friction plays a very
important role in that it is responsible for damping out the oscillations of the
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Figure 6. Comparison of velocities for f /f=1/250.




mass sled as it progresses along the circular track. Setting 4 =0 in
equations (11) and (21) shows that the long time limits for #andV become
2nzand (a+1)yr, respectively. Figure 7 displays the influence of friction
where one can see that the velocity no longer damps to the asymptotic limit,
V= (a +1 ) ¥, when the force attributed to friction is assumed to be zero.

r=1m o=0.20 ¥y=n/4 u=0.0050

5
=)

o
>

&
>

—p=0
— — — 1=0.0050
Eq. 21)

Velocity (Km/s)
W
=4

»
>

oy
>

e
>

1.0 2.0 3.0 4.0 5.0
Time (s)

e
=)

* Figure 7. Comparison of velocities with and without damping p =0, pu = 0.

5. Conclusions

The analysis presented here gives an explicit expression for the rate at which an
accelerating mass becomes phase locked while it traverses a circular slingatron
having a gyration phase angle ¥ varying as a quadratic with time. We have also
shown that the final phase-lock angle has the simple expression 6 — t + n/a for
the usual small values of W and 0. In order to keep O constant, we must
gradually increase y so that it diverges at t = (b\i{o )", as does the phase-locked
¢. This is because as the gyration speed 27 R(f¢+f ) increases, so must the
mass gain speed =27z asin(@) (see equation [5] for ©=constant) per turn.
However, we choose, ¥ =y, + 27 f t + 7 f t*, which causes the gyration speed to
become large at large times. Thus, we have shown that the only way the mass
can stay phase locked with this increasing gyration speed is to assume smaller
values of 8 so that it does not gain too much velocity per turn. For our choice of
V¥, we have 8 —>p+p/a<<l, as time becomes large, thus keeping the
accelerating mass phase locked with gyration.
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List of Symbols

a = complex parameter for the confluent hypergeometric function | F,
b = constant of integration

CLL,C2= = complex constants of integration

f = frequency of gyration arm 1/s

f = angular acceleration of gyration arm 1/ s

F, = force vector parallel to slingatron track |F,,} =F,

F = force vector perpendicular to slingatron track IF l| =F,

B o= confluent hypergeometric function

i o= 41

unit vector along ordinate

e
i

= unit vector along abscissa
= unit vector K =ix

= mass of slingatron sled
frequency ratio = f/f?

= transform of independent variable

e Y F -
[

= radius vector of slingatron circle

= radius vector of gyration arm |r| =T
= time

= velocity vector V = 4/x* + y?

= velocity of sled relative to the track
= ordinate of sled

abscissa of sled

= transformed dependent variable

= ratio of radii 1/R

= polar angle

= coefficient of fricHon

VTR RN X &Hod o
1

= transformed independent variable
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polar angle of vector R
polar angle of vector r
lock-in angle =y — ¢
absolute value
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